O PRODUTO DE SOLUBILIDADE DO TARTARATO DE CÁLCIO EM MEIOS HIDROALCOÓLICOS EM FUNÇÃO DOS SEUS FACTORES DETERMINANTES

A. S. CURVELO-GARCIA

Estação Vitivinícola Nacional. Dois Portos. Portugal

RESUMO

Foi determinada a constante termodinâmica do produto de solubilidade do tartarato de cálcio em meios hidroalcoólicos em função do pH, para teores alcoólicos em volume de $0\,\%$ a $20\,\%$ e para temperaturas de 0° C a 18° C.

INTRODUÇÃO

A solubilidade do tartarato de cálcio nos vinhos é, em primeiro lugar, função dos factores essencialmente determinantes do produto de solubilidade: teor alcoólico em volume, temperatura e pH. É contudo assinalável o aumento dessa solubilidade devida à presença de ácidos, orgânicos e inorgânicos, com especial relevo, tendo em atenção a sua expressão quantitativa, para os ácidos málico e láctico, aspectos referidos por diversos autores e recentemente estudados por Postel (1983); as proteínas, os taninos e eventualmente ainda outras substâncias de elevado peso molecular apresentam um significativo efeito inibidor sobre a cristalização do tartarato de cálcio, atrasando a germinação dos cristais, mas não influenciando de modo sensível o equilíbrio de solubilidade (Postel, 1983).

Será assim mais difícil e complexa a determinação da quantidade de tartarato de cálcio existente nos vinhos que não precipite a uma dada temperatura, a um dado pH e a um determinado teor alcoólico, à semelhança por exemplo do cálculo de Pato et al (1974) para a solubilidade do bitartarato de potássio em mostos e vinhos, apesar dos importantes contributos de Postel (1983)

para a previsão da instabilidade de um vinho quanto à precipitação de tartarato de cálcio.

Contudo, uma eventual precipitação de tartarato de cálcio num vinho poderá sempre ocorrer, se bem que de modo mais ou menos lento, quando se atinja o respectivo produto de solubilidade, considerando os iões tartarato e cálcio não envolvidos em complexos, «livres», passíveis de precipitarem na forma de tartarato de cálcio. Daí o interesse em conhecer, de um modo mais profundo, a dependência do produto de solubilidade das principais características físicas e físico-químicas suas determinantes — teor alcoólico em volume, temperatura e pH. Neste trabalho, pretendeu-se estudar estas funções de dependência, recorrendo a soluções hidroalcoólicas por forma a eliminar todas as outras acções interferentes.

MATERIAL E MÉTODOS

Soluções ensaiadas

Preparou-se soluções saturadas de tartarato de cálcio (a quente — cerca de 70° C- 80° C), com teores alcoólicos em volume de 0%, 5%, 10%, 15% e 20%. Após arrefecimento natural até à temperatura ambiente, acidificou-se cada uma das soluções a pH's = 3.0; 3.2; 3.4; 3.6; 3.8 e 4.0 (acidificação com ácido L(+) tartárico). Engarrafou-se cada uma das 30 soluções obtidas em garrafas de 7.5 dl, submetendo-se de seguida a uma permanência durante 45 dias a diferentes temperaturas (0° C, 5° C e 18° C). Após este período, as soluções foram filtradas (à respectiva temperatura do estágio) e analisadas a 20° C — determinou-se o teor em ácido tartárico, o teor em cálcio e o pH. Os ensaios foram feitos em duplicado.

Métodos analíticos

O ácido tartárico foi determinado pelo método rápido de Rebelein descrito por Lipka e Tanner (1974). O teor de cálcio foi determinado por espectrofotometria de absorção atómica, segundo o método descrito pelo OIV em 1986 (Anónimo, 1986). O pH foi determinado por potenciometria (Anónimo, 1978).

RESULTADOS E DISCUSSÃO

Os resultados obtidos são indicados no Quadro I, sendo apenas referidos os valores correspondentes a soluções cujo pH final é inferior a 4,50.

Representando por H_2T , HT- e T=, respectivamente, o ácido tartárico na forma molecular, o ião bitartarato e o ião tartarato, temos que os equilíbrios que se estabelecem entre eles, em solução, são determinados pelas constantes de equilíbrio K_1 e K_2 :

$$H_{2}T \stackrel{K_{1}}{\longleftrightarrow} H^{+} + HT^{-} \qquad K_{1} = \frac{[H^{+}][HT^{-}]}{[H_{2}T]} \qquad (1)$$

$$HT \stackrel{K_{2}}{\longleftrightarrow} H^{+} + T^{=} \qquad K_{2} = \frac{[H^{+}][T^{-}]}{[HT^{-}]} \qquad (2)$$

onde as concentrações molares se representam simbolicamente por parêntesis rectos.

Os valores de K₁ e K₂ dependem do teor alcoólico em volume, da temperatura e da força iónica do meio; por forma a libertarmo-nos da dependência da força iónica, tornando pois os resultados reprodutíveis para outras condições, poderemos pois exprimir as constantes de equilíbrio em termos das actividades — constantes de equilíbrio termodinâmicas K₁° e K₂°:

$$K_1^{\circ} = \frac{(H^+) (HT^-)}{(H_2T)}$$
 (3)

$$K_2^o = \frac{(H^+) (T^-)}{(HT^-)}$$
 (4)

representando as respectivas actividades por parêntesis curvos.

Berg e Keefer (1958) indicam valores de K_1° e K_2° para teores alcoólicos em volume de 0 % (a 20° C), 10 % (a -4° C e a 20° C) e 20 % (a -4° C e a 20° C).

Por outro lado, deduz-se da equação de Arrhenius [que nos dá a dependência da constante de velocidade k de uma reacção da temperatura absoluta T: ln $k_1/k_2 = \frac{E}{R}$ (1/T₂—1/T₁)] a

QUADRO I

Os valores de pH e das concentrações de ácido tartárico e de cálcio Les valeurs de pH et des concentrations d'acide tartrique et de calcium

							0/0 álcool	loi						
Temp.	0/00			5 0/0			10 0/0			15 0/0	0		20 0/0	
Hd		Ác. tert. Ca M/dm ³ ×10 ³ M/dm ³ ×10 ³ pH	ЬH	Ác. tart. M/dm³×10³	Åc. tart. Ca $M/dm^3 \times 10^3 M/dm^3 \times 10^3$	Ηd	Åc. tart. $ ext{M/dm}^3 imes 10^3$	Ca M/dm ³ ×10 ³	Hd ,	Ác. tərt. M/dm ³ ×10 ³ N	Ca 3 M/dm ₃ ×10 ³	03 PH	Ác. tart. , M/dm ³ ×10 ³	Ca M/dm ³ ×10 ³
2.96	П	3.00	2.96	8.75	2.00	2.62	23.75	2.00	2.55	15.75	(*)	2.64	20.50	(*)
	14 6.50 23 4.50	2.00	3.06	6.50 3.25	1.50	2.83	10.50	1.50	2.77	7.75	(*)	2.85	8.25	*
3.58		1.50	3.52	1.75	1.00	3.29	2.00	1.00	3.06	3.00	£ (£)	9.07 3.22		€ €
			4.36	0.50	0.50	3.38	1.25	1.00	3.52	0.50	*	3.45		*
						3.60	0.50	*	3.60	0.50	*	3.69		*
3.01		1	3.03	9.25	2.38	2.65	25.50	2.60	2.72	16.50	1.50	2.67	'	1.40
3.11			3.11	2.00	1.88	2.84	11.00	1.73	2.90	7.75	1.18	2.88		0.98
5° C 3.29	3.50		65.53	3.50	1.50	3.03	5.05	1.25	.3.13	4.50	1.15	3.04	3.50	0.68
			3.65	1.75	1.33	3.28	2.50	1.00	3.26	1.50	0.70	3.24		0.60
			3.82	1.25	1.13	3.41	1.75	0.93	3.53	0.50	0.63	3.47	0.50	0.50
						3.67	1.25	0.78	3.69	0.50	09.0	3.66	0.25	0.40
3.21		4.00	2.98	8.50	1	2.71	25.50	3.50	2.79	16.25	2.00	2.75		2.00
	100 7.00 70 E 9E	4.00	3.14	6.25	1	2.91	10.75	2.50	3.04	8.25	1.50	2.94	9.25	1.50
18° C 3.90		£.00	5.5	7.50	1	3.20	5.75	2.00	3.21	5.00	1.50	3.16		0.50
;		5.°°				3.45	2.50	1.50	3.44	2.50	0.50	3.40		0.50
						3.56	1.25	1.00	3.71	1.00	0.50	3.61		0.25
						3.86	1.25	1.00	3.83	0.50	0.50	3.84		0.25

^(*) Teores de cálcio inferiores a $0.25 \times 10^{-3} \ \mathrm{M/dm^3}$.

relação da dependência entre as constantes de equilíbrio (termodinâmicas) e a temperatura absoluta:

$$\ln \frac{\kappa_1^{\circ}}{\kappa_2^{\circ}} = C^{\frac{\text{te}}{}} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$$
(5)

Com base nos valores referidos por Berg e Keefer (1958) e na equação (5), determinou-se então os valores de K_1° e K_2° para teores alcoólicos em volume de 10 % e 20 % e para temperaturas de 0° C, 5° C e 18° C. No Quadro II, indica-se os correspondentes valores de $pK_1^\circ = -\log K_1^\circ$ e de $pK_2^\circ = -\log K_2^\circ$

QUADRO II

Os valores de pK_1° e pK_2° Les valeurs de pK_1° et pK_2°

			Tempe	ratura		
% álcool	0 ° C		50	C	180	c
alcoor	pK $_{1}^{o}$	pK $_{2}^{o}$	pK o	pK $_{2}^{o}$	рК о	pK o
0 %	3.10	4.43	3.09	4.41	3.05	4.38
5 %	3.14	4.49	3.12	4.47	3.08	4.44
10 %	3.18	4.55	3.16	4.53	3.12	4.50
15 %	3.22	4.64	3.20	4.62	3.16	4.59
20 %	3.27	4.74	3.25	4.72	3.21	4.69

Verifica-se que as funções $pK_1^\circ = f_1(t)$ e $pK_2^\circ = f_2(t)$ são lineares e do tipo $pK_1^\circ = A_1t + B_1$ e $pK_2^\circ = A_2t + B_2$, onde A_1 e A_2 são constantes independentes do teor alcoólico em volume e B_1 e B_2 são constantes dependentes deste teor. Assim, com base nos valores de K_1° e K_2° para um teor alcoólico em volume de 0% e para a temperatura de 20° C, indicados por Berg e Keefer (1958), determinou-se os valores de pK_1° e pK_2° para este teor alcoólico e para as temperaturas de 0° C, 5° C e 18° C (Quadro II).

Os valores de p K_1° e p K_2° (Quadro II), para as temperaturas de 0° C, 5° C e 18° C e para um teor alcoólico em volume de 5% e 15%, foram determinados de um modo semelhante, após se ter previamente determinado as relações de dependência entre os valores de p K_1° e p K_2° e o teor alcoólico em volume — muito aproximadamente lineares, sobretudo para o caso de p K_1° .

Para cada uma das soluções referidas no Quadro I, determinou-se então a percentagem de ácido tartárico existente na forma de ião tartarato (Berg e Keefer, 1959):

$$\% (T^{-}) = \frac{100}{1 + \frac{(H^{+})}{\kappa_{2}^{\circ}} \left[1 + \frac{(H^{+})}{\kappa_{1}^{\circ}}\right]}$$
(6)

Seguidamente, determinou-se a força iónica (μ) para cada uma das soluções consideradas no Quadro I:

$$\mu = \frac{1}{2} (4 [T =] + [HT -] + 4 [Ca +] + [H +])$$
 (7)

Admitiu-se, nestes cálculos, que [T=]=% (T=). [T], onde [T] representa a concentração molar do ácido tartárico (molecular e formas dissociadas), dada no Quadro I. Calculou-se a concentração do ião HT—, admitindo também que [HT-]= = % (HT-). [T] e determinando % (HT-) de um modo semelhante ao cálculo de % (T=), a partir das equações (3) e (4):

% (HT⁻) =
$$\frac{100}{1 + \frac{K_2^{\circ}}{(H^+)} + \frac{(H^+)}{K_1^{\circ}}}$$
(8)

Os valores de μ calculados são suficientemente pequenos para se poder aplicar a lei limite de Debye e Hückel ao cálculo dos coeficientes de actividade dos iões $T=(a_{T}=)$ e $Ca++(a_{Ca}++)$:

$$\log a_{T^{=}} = -4 \text{ A } \sqrt{\mu} \tag{9}$$

$$\log a_{Ca}^{++} = -4 A \sqrt{\mu}$$
 (10)

Admitindo que a constante A, de acordo com os dados da bibliografia e as condições do ensaio, é aproximadamente igual a 0.5, calculou-se então as actividades dos iões T= e Ca++, para os diversos casos considerados:

$$(T^{-}) = a_{T}^{-} . [T^{-}]$$
 (11)

$$(Ca^{++}) = a_{Ca}^{++} \cdot [Ca^{++}]$$
 (12)

Determinou-se seguidamente os valores das constantes (termodinâmicas) do produto de solubilidade:

$$K_{PS}^{o} = (T^{-}) \cdot (Ca^{++})$$
 (13)

e os respectivos valores de

$$pK_{PS}^{o} = -\log K_{PS}^{o} \tag{14}$$

Verificando-se que as funções pK $_{PS}^{\circ} = f$ (pH) são muito aproximadamente lineares (pH compreendido entre 2.5 e 4.5), para as diversas temperaturas e teores alcoólicos em volume considerados, facto já sugerido pelos dados de Postel (1983), determinou-se então as rectas exprimindo essas funções, pelo método dos mínimos quadrados, as quais se indicam na Fig. 1.

É evidente a muito sensível influência que o pH exerce na maior ou menor solubilidade do tartarato de cálcio, influência essa por sua vez muito dependente do teor alcoólico em volume e, embora significativamente menos, da temperatura; tomando como referência, por exemplo, uma temperatura de 18° C, verifica-se que a solubilidade a pH = 3,0 é cerca de 5 vezes maior que a pH = 3,5 para um teor alcoólico de 20 %, cerca de 2 vezes maior para um teor alcoólico de 15 % e cerca de 1,2 vezes maior para um teor alcoólico de 10 %; por outro lado, tomando como exemplo uma temperatura de 0° C e um teor alcoólico de 10 %, o aumento de solubilidade a pH = 3,0 (relativamente a pH = 3,5) é de cerca de 1,5 vezes, pouco diferente do verificado para a mesma solução a 18° C.

Verifica-se assim, de uma forma muito nítida e perfeitamente quantificada, que a diminuição da solubilidade do tartarato de cálcio com a temperatura é profundamente dependente do pH,

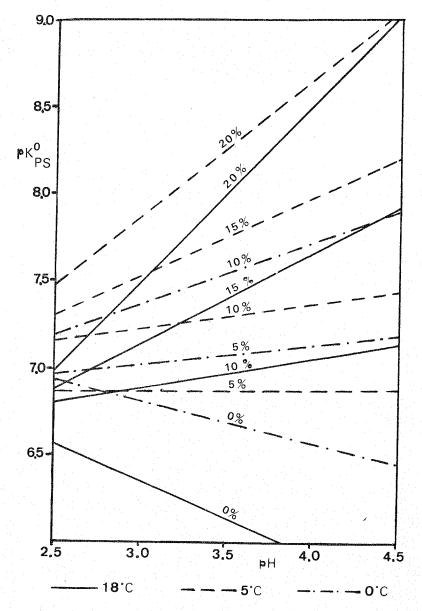


Fig. 1 — pK $_{\rm PS}^{\rm o}$ = f (pH), para diversas temperaturas e diversos teores alcoólicos em volume.

 $pK_{PS}^{o}=f$ (pH), pour plusieures températures et plusieurs titres alcoométriques.

o que confirma o que hoje se sabe sobre a maior probabilidade de ocorrência de um precipitado de tartarato de cálcio em vinhos, a pH's elevados (Postel, 1983).

Estes factos apontam também para a possibilidade de prever a eficácia de um tratamento pelo frio para a estabilização de um vinho quanto a precipitações de tartarato de cálcio ou de prever a sua evolução quanto à eventual ocorrência de acidentes deste tipo, interpretando racionalmente a influência dos três factores estudados, embora tendo sempre em consideração o papel de relevo desempenhado pelos diversos factores interferentes na solubilização do tartarato de cálcio em vinhos, a que a bibliografia largamente se refere e a que fizemos referência na Introdução.

Finalmente, há a referir que, neste trabalho, determinámos as constantes (termodinâmicas) do produto de solubilidade do tartarato de cálcio (K_{PS}°); para cada caso concreto, as constantes do produto de solubilidade em termos de concentrações (K_{PS}) poderão ser calculadas a partir daquelas, fazendo intervir os coeficientes de actividade dos iões T=e Ca++, por sua vez calculáveis a partir da respectiva força iónica do meio.

Os valores de K $_{PS}^{\circ}$ (ou pK $_{PS}^{\circ}$) dão-nos valores universais, extrapoláveis para cada caso concreto.

CONCLUSÕES

Verificou-se experimentalmente que, em soluções hidroal-coólicas (de 0 % a 20 %) e a diversas temperaturas (0° C, 5° C e 18° C), o valor de pK $_{PS}^{\circ} = -\log K _{PS}^{\circ}$ ($K _{PS}^{\circ} = -\cos \tan t$ termodinâmica do produto de solubilidade do tartarato de cálcio) é uma função linear do pH (para valores situados entre 2.5 e 4.5), função esta por sua vez dependente da temperatura e do teor alcoólico em volume.

Determinou-se, para os diferentes casos considerados, as rectas exprimindo as relações funcionais $pK_{PS}^{\circ} = f$ (pH), com interesse prático quer para auxiliar a previsão de ocorrência de uma precipitação de tartarato de cálcio em vinhos quer para prever (e racionalizar) a sua estabilização quanto a este eventual acidente.

AGRADECIMENTOS

Agradeço a colaboração prestada pela Eng. Téc. Agr. M. Carmo Godinho e pelo Eng. Téc. Agr. Pedro Barros, do Serviço de Análises do Departamento de Enologia da EVN.

RÉSUMÉ

Le produit de solubilité du tartrate de calcium de solutions hidroalcooliques

Il a été determinée la constante du produit de solubilité du tartrate de calcium de solutions hidroalcooliques en fonction du pH, pour des titres alcoométriques de 0% à 20% e pour des températures de 0° C à 18° C.

SUMMARY

The solubility product for calcium tartrate in alcohol — water solutions

The solubility product constant thermodynamic for calcium tartrate in alcohol-water solutions was calculated over the range of alcohol contents 0 %-20 % and temperatures 0° C-18° C, in function of pH.

REFERÊNCIAS BIBLIOGRAFICAS

Anónimo

1878 Recueil des Méthodes Internationales d'Analyse des Vins, OIV, Paris.

1968 Revision du Recueil (I partie). Doc. OIV, 1373/86.

Berg, H. W. e Keefer, R. M.

1958 Analytical Determination of tartrate stability in wine. I. Potassium Bitartrate. Am. J. Enol.' 9 (4): 180-193.

1959 Analytical Determination of tartrate stability in wine. II. Calcium tartrate. Am. J. Enol. Vitic., 10 (3): 105-109.

Lipka, Z. e Tanner, H.

1974 Une nouvelle méthode de dosage rapide de l'acide tartrique dans les moûts, les vins et autres boissons (selon Rebelein). Rev. Suisse Vit. Arb. Hort., 6 (1): 5-10.

Pato, M., Mendonça, A. e Fernandes, J.

1974 Determinação da quantidade de bitartarato de potássio existente nos mostos e nos vinhos que não precipita a uma dada temperatura. Vin. Port. Doc., II, 7 (1): 1-100.

Postel, W.

1983 La solubilité et la cinétique de cristallisation du tartrate de calcium dans le vin. *Bull. OIV*, **56** (629-630): 554-568.