

EXTRAÇÃO DE NUTRIENTES PELO PINHEIRO-MANSO

O conhecimento das necessidades em nutrientes dos povoamentos de pinheiro-manso, para uma dada condição de solo e clima, é determinante para se definir a fertilização a realizar.

M. Encarnação Marcelo¹, Margarida Gaspar², Cristina Sempiterno¹ & Alexandra Correia¹

¹ Instituto Nacional de Investigação Agrária e Veterinária

² APFC - Associação de Produtores Florestais do Concelho de Coruche e Limítrofes

A prática da fertilização racional das culturas arbóreas, incluindo a dos povoamentos florestais, pretende evitar custos excessivos e contaminações ambientais e deve ser baseada no conhecimento da disponibilidade de nutrientes no solo e na capacidade das árvores para utilizarem esses nutrientes. No entanto, é essencial fazer a avaliação prévia das necessidades nutricionais da espécie em causa. O ideal seria saber quais as exigências de cada nutriente nas diferentes fases do ciclo de desenvolvimento.

Só quando os nutrientes se encontram disponíveis em quantidades suficientes e em proporções equilibradas é possível garantir o bom crescimento e a produtividade das árvores. Se tal não acontece, será necessário utilizar práticas que promovam a sua disponibilidade ou fornecê-los através da fertilização. No que concerne ao pinheiro-manso (Pinus pinea L.), não se dispunha daquela informação, tendo-se decidido avaliar a biomassa e a concentração em minerais de alguns órgãos de um pinheiro-manso jovem, no âmbito do Grupo Operacional FERTIPINEA – Nutrição e fertilização do pinheiro-manso em sequeiro e regadio, financiado pelo PDR2020 e que decorreu entre 2017 e 2022.

O pinheiro-manso caracteriza-se por ter grande plasticidade em termos de clima e solo, estendendo-se principalmente pela bacia do Mediterrâneo, de Portugal à Turquia (Mutke et al., 2012; Caudullo et al., 2017). As características ecológicas do nosso país permitem que se distribua por diferentes regiões, com maior expressão no Ribatejo e Alentejo Litoral, ocupando uma área total de cerca de 193 mil hectares (ICNF, 2019).

Trata-se de uma espécie de luz que suporta temperaturas elevadas e períodos de seca característicos da nossa região. É pouco tolerante ao frio, evitando zonas de fortes geadas. As temperaturas médias anuais na sua área de distribuição oscilam entre 10 e 18 °C, com a precipitação anual a variar de 300 a 1500 mm. No que respeita aos solos, prefere os arenosos bem drenados, de reação ácida ou pouco ácida, mas adapta-se bem a outros tipos de solos, incluindo os moderadamente calcários (Costa, 2007; Abad Viñas et al., 2016). Na primavera há um pico no crescimento vegetativo e reprodutivo do pinheiro-manso, sendo nos meses

de abril a junho que ocorrem os eventos fenológicos mais exigentes em fotoassimilados: floração feminina e masculina, fecundação das flores emergidas dois anos antes, abrolhamento, crescimento radial e crescimento da pinha em peso e volume. É também nesta altura que se dá início à expansão foliar, que se prolonga durante todo o verão, atingindo as árvores a máxima área foliar no outono antes da entrada em dormência (Correia, 2021).

Assim, dever-se-á garantir que nestas fases as necessidades nutricionais do pinheiro-manso são asseguradas, pois, embora a produção de pinha dependa de vários fatores, uma adequada nutrição influencia positivamente o crescimento e a produtividade das árvores em pinha e pinhão.

Procedimento

Num povoamento de pinheiro-manso não enxertado, com 15 anos de idade e instalado na região de Coruche, foi selecionada uma árvore para abater e, posteriormente, avaliar a quantidade de biomassa existente acima do solo e a sua concentração em nutrientes (não se consideraram as raízes).

Após a caracterização do pinheiro (diâmetro à altura do peito - DAP - e diâmetros de copa - DC) e o seu abate, procedeu-se às medições das alturas do cepo, do tronco até ao primeiro verticilo e entre os restantes verticilos, bem como dos respetivos diâmetros cruzados. Cortaram-se os diferentes troços do tronco e retirou-se uma rodela na zona correspondente a cada verticilo, que foi medida e pesada. No que respeita aos ramos, avaliaram-se os diâmetros na zona de inserção em cada um dos verticilos, tendo-se considerado um deles como ramo-amostra em cada verticilo (para medições e análise química) e os restantes ramos apenas foram pesados. Destacaram-se separadamente as agulhas de um e dois anos de idade do ramo-amostra e fracionou-se o material lenhoso deste ramo, de acordo com quatro classes de diâmetro: <2,5 cm, 2,5-5,0 cm, 5,0-7,5 cm e >7,5 cm. Procedeu-se à pesagem dos diferentes componentes e retirou-se uma amostra de cada. Também se contaram e pesaram as pinhas do 1.º, 2.º e 3.º ano presentes na árvore, embora fossem em pequeno número.

Em laboratório, procedeu-se à pesagem das amostras em verde, à sua lavagem e, depois de secas em estufa, foram novamente pesadas. Nas pinhas maduras destacaram-se os pinhões negros, aos quais se retirou a casca, tendo-se formado três conjuntos: escamas, casca do pinhão negro e miolo do pinhão. As amostras retiradas do tronco, dos ramos, das agulhas e da pinha, num total de 47, após terem sido moídas foram analisadas relativamente aos seguintes nutrientes: azoto, fósforo, potássio, cálcio, magnésio, sódio, ferro, manganês, zinco, cobre e boro. Os métodos analíticos seguidos foram os que estão em uso no Laboratório Químico Agrícola Rebelo da Silva (LQARS), do Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV). O azoto foi determinado num analisador elementar e os restantes nutrientes num espectrómetro de emissão de plasma (ICP-OES).

Com os dados obtidos foi possível estimar os valores da extração de nutrientes, considerando que esta corresponde à quantidade de nutrientes que as plantas retiram do solo e/ou do ar para produzir determinada quantidade de biomassa.

Resultados obtidos

A árvore em estudo apresentou uma massa de 426 kg acima do solo, um DAP de 25 cm e DC de 5 m. Os ramos equivaleram a mais de metade da biomassa total (54%), enquanto o tronco e as agulhas representaram, respetivamente, 25% e 21% do total (Quadro 1). Apenas existiam seis pinhas do 3.º ano na árvore, pelo que não se considerou o seu peso neste cálculo. Na Figura 1 podem observar-se os resultados dos macronutrientes expressos em relação à mesma quantidade de matéria verde (100 kg) das diferentes partes do pinheiro, incluindo a pinha (com pinhão). O azoto é o nutriente que existe em maior quantidade em todos os órgãos da árvore. De seguida vem o potássio, no caso da pinha e das agulhas, e o cálcio, no caso dos ramos e do tronco. Os teores de fósforo são mais baixos do que os dos nutrientes atrás referidos, inferiores mesmo aos de magnésio, exceto na pinha.

O nutriente que se encontra representado em menor proporção em todos os órgãos é o cobre, se-

Quadro 1 – Quantidade de biomassa e de nutrientes e sua repartição pelas agulhas, ramos e tronco de um pinheiro-manso													
Material	Peso verde	Macronutrientes					Micronutrientes						
		Azoto (N)	Fósforo (P)	Potássio (K)	Cálcio (Ca)	Magnésio (Mg)	Sódio (Na)	Ferro (Fe)	Manganês (Mn)	Zinco (Zn)	Cobre (Cu)	Boro (B)	
	(kg)	(g)											
Agulhas	90	398	30	230	198	97	16	1,9	4,9	0,62	0,11	0,27	
%*	21,1	30,9	44,9	53,1	32,8	50,0	47,1	40,0	64,2	40,6	26,8	26,4	
Ramos	229	449	25	159	313	75	14	2,2	2,2	0,69	0,20	0,56	
%*	53,8	34,9	36,5	36,6	52,0	38,5	41,1	47,0	28,8	45,0	50,3	55,4	

22

11,6

194

4,2

11,9

35

0,61

13,0

4,6

426 *percentagem em relação ao total (agulhas + ramos + tronco)

107

25,1

Tronco

%*

Total

guindo-se o boro. No total da árvore, o manganês é o micronutriente que aparece em quantidade mais elevada (Quadro 1).

441

34,2

1288

13

18,6

68

45

10,3

434

91

15,2

602

O predomínio do azoto nos diferentes órgãos, nomeadamente nas agulhas, está de acordo com o esperado, pois este nutriente entra na constituição da molécula da clorofila (pigmento fotossintético em abundância nas folhas), mas também dos aminoácidos, proteínas, ácidos nucleicos e enzimas. O facto do tronco e dos ramos conterem um valor também elevado de azoto pode refletir o seu papel como órgãos de reserva. Contudo, para se confirmar este aspeto será necessário realizar estudos mais detalhados em que se avalie a variação da concentração do nutriente ao longo do ciclo.

0,53

7,0

7,6

0,22

14,5

1,5

0.092

22,9

0,40

0.19

18,2

1,0

O magnésio, que é igualmente um constituinte da molécula da clorofila, existe em maior quantidade nas agulhas.

Os valores estimados da extração dos nutrientes considerando uma produção de 1000 kg de pinha e

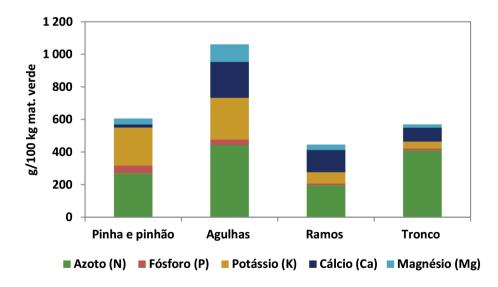


Figura 1 - Composição média em azoto, fósforo, potássio, cálcio e magnésio da pinha com pinhão, agulhas, ramos e tronco (g/100 kg de matéria verde) de um pinheiro-manso.

1000 kg da parte vegetativa (tronco, ramos e agulhas) do pinheiro-manso constam no Quadro 2. Como já se referiu, o azoto é o nutriente mais abundante na pinha, com um valor de 2,7 kg por tonelada de peso verde, ao qual se sucede o potássio (2,3 kg/t). Estes dois nutrientes representam mais de 80% da composição mineral da pinha. Neste órgão, os nutrientes obedecem à seguinte ordem decrescente: N > K > P > Mg > Ca > Na > Fe > Mn > Zn > B > Cu. No que respeita à parte vegetativa (tronco, ramos e agulhas), o azoto é também o nutriente que é extraído em maior quantidade (3,0 kg/t), seguindo--se o cálcio (1,4 kg/t) e o potássio (1,0 kg/t) que, em conjunto, correspondem a 88% do total da composição mineral. Neste caso, a sequência é a seguinte: N > Ca > K > Mg > P > Na > Mn > Fe > Zn > B > Cu.Os valores das extrações dos micronutrientes são baixos em todos os materiais, variando entre 2,6 g de cobre e 14 g de ferro por tonelada de pinha produzida.

Conclusões gerais

Sem considerar as outras perdas que ocorrem no sistema, os nutrientes são exportados dos pinhais principalmente através da pinha (com pinhão) que é colhida e retirada dos povoamentos sempre que há produção. Também os desbastes e as desramações, quando a lenha e as agulhas das árvores são removidas do local, contribuem para diminuir a reserva de nutrientes disponível. Quer numa situação quer noutra, o azoto é o nutriente que é exportado em maior quantidade dos povoamentos de pinheiro-manso. No caso da pinha, o valor do potássio aproxima-se do valor do azoto.

Conjugando esta informação com o conhecimento das características do solo, avaliada através da análise de terra, e do estado de nutrição das árvores, avaliado através da análise das agulhas, será possível estabelecer a quantidade de nutrientes a aplicar através da fertilização.

A extração de nutrientes varia de ano para ano e com o local, pelo que é desejável que se desenvolvam trabalhos similares noutras condições pedoclimáticas e que incidam sobre árvores em diferentes estádios de desenvolvimento. ©

Bibliografia

Abad Viñas, R.; Caudullo, G.; Oliveira, S. & de Rigo, D. (2016). Pinus pinea in Europe: distribution, habitat, usage and threats. *In*: San-Miguel-Ayanz, J.; de Rigo, D.; Caudullo, G.; Houston Durrant, T. & Mauri, A. (Eds.), European Atlas of Forest Tree Species. Luxemburgo: Publications Office of the European Union, pp. 130–131.

Caudullo, G.; Welk, E. & San-Miguel-Ayanz, J. (2017). Chorological maps for the main European woody species. Data in Brief, 12:662–666.

Correia, A.C. (2021). Condicionantes da produção de pinha: resultados de 4 anos de monitorização. Comunicação apresentada ao Workshop final do GO FERTIPINEA e GO +PINHÃO a 30/11/2021. https://www.unac.pt/index.php/id-i/grupos-operacionais-accao-1-1-pdr2020/fertipinea.

Costa, J.C. (2007). Biologia e ecologia do pinheiro-manso. In: Silva, J.S. (Coord.). Árvores e Florestas de Portugal 04. Pinhais e Eucaliptais. A floresta cultivada. Lisboa: Público, Comunicação Social, SA & Fundação Luso--Americana para o Desenvolvimento. pp. 109–120.

Quadro 2 – Extração média de nutrientes por 1000 kg de pinha e 1000 kg da parte vegetativa (tronco, ramos e agulhas), em peso verde, do pinheiro-manso												
Makadal	Azoto (N)	Fósforo (P)	Potássio (K)	Cálcio (Ca)	Magnésio (Mg)	Sódio (Na)	Ferro (Fe)	Manganês (Mn)	Zinco (Zn)	Cobre (Cu)	Boro (B)	
Material	(kg)					(g)						
Pinha com pinhão (1000 kg)	2,7	0,48	2,3	0,19	0,37	84	14	7,5	6,4	2,6	4,5	
Parte vegetativa (1000 kg)	3,0	0,16	1,0	1,4	0,46	82	11	18	3,6	0,94	2,4	

ICNF (2019). 6.º Inventário Florestal Nacional (IFN6). 2015. Relatório Final. Lisboa: Instituto da Conservação da Natureza e das Florestas. 284 pp.

Mutke, S.; Calama, R.; Gonzalez-Martínez, S.C.; Montero, G.; Gordo, F.J.; Bono, D. & Gil, L. (2012). Mediterranean stone pine: Botany and horticulture. Horticultural Reviews, 39(1):153-201.

Agradecimentos

Agradece-se ao proprietário do pinheiro-manso utilizado no presente estudo, Eng.º Martinho Dias, aos Técnicos Superiores Rui Fernandes e Anabela Veloso, aos Técnicos do Setor de Receção e Preparação de Amostras e do Laboratório de Análise de Plantas do INIAV/LQARS, bem como aos sapadores da APFC, pela colaboração.

Este trabalho foi cofinanciado pelo PDR2020: Grupo Operacio-**ERTIDINEA** nal FERTIPINEA – Nutrição e fertilização do pinheiro-manso em sequeiro e regadio - PDR2020-101-031330 (INIAV).

Figura 2 - Aspetos da separação, medição e pesagem de diferentes órgãos do pinheiro-manso.