

EXTRAÇÃO DE NUTRIENTES POR PLANTAS HALÓFITAS: COUVE-MARINHA, FUNCHO-MARÍTIMO E LÍRIO-DAS-AREIAS

A fertilização destas culturas deve ser planeada de acordo com as necessidades específicas de cada uma, tendo em consideração o estado de fertilidade do solo, de modo a favorecer o desenvolvimento vegetativo das plantas, a otimizar a produção e, simultaneamente, a evitar impactes ambientais negativos. Em situações de regadio, é ainda necessário atender às características da água de rega.

Maria da Encarnação Marcelo¹, Alda Brás², Ana Vicente², Ana Raposo¹, Maria João Moura¹ e Anabela Veloso¹

¹ Instituto Nacional de Investigação Agrária e Veterinária

² CCDR-Norte – Comissão de Coordenação e Desenvolvimento Regional do Norte

Introdução

Num contexto de alterações climáticas em que a diminuição da precipitação e a degradação dos solos constituem, muitas vezes, um fator limitante ao cultivo de diversas espécies, as plantas halófitas, espécies tolerantes ou resistentes à salinidade e com capacidade para absorver a água em solos com baixo potencial hídrico, têm merecido particular atenção pelo seu interesse agronómico e bioquímico. Estas plantas encontram-se sobretudo em zonas costeiras, onde se desenvolvem de forma espontânea, podendo determinadas partes ser utilizadas pelas comunidades locais. No entanto, algumas espécies apresentam potencial para serem cultivadas como hortícolas, destinando-se a ser utilizadas como alimento, em virtude do seu valor nutricional e benefícios para a saúde ou, ainda, a ser aproveitadas pela indústria cosmética devido à presença de compostos bioativos relevantes. São exemplos disso a couve-marinha, o funcho-marítimo e o lírio-das-areias.

A couve-marinha (*Crambe maritima*, L.) pertence à família das Brassicáceas, tem o seu *habitat* natural nas costas arenosas do norte da Europa e do mar Negro (Christensen *et al.*, 2015) e é cultivada tanto para fins alimentares (folhas) como ornamentais. Para além disso, apresenta propriedades medicinais reconhecidas, nomeadamente atividade antioxidante e anti-inflamatória, sendo ainda valorizada pela indústria cosmética devido ao seu teor em vitaminas e ácidos gordos essenciais.

O funcho-marítimo (*Crithmum maritimum* L.) é uma halófita perene pertencente à família das

Apiáceas, amplamente distribuída em zonas litorais e especialmente abundante nas regiões costeiras dos países mediterrânicos (Renna, 2018). Em Portugal, ocorre ao longo de toda a faixa litoral. É uma planta muito aromática que tem sido utilizada desde a Antiguidade tanto na culinária como na medicina popular, devido às suas propriedades bioativas (Kraouia et al., 2023). Atualmente, é consumido em diversos países do sul da Europa, sobretudo como ingrediente em saladas, sopas e conservas, sendo igualmente valorizado pelo seu potencial farmacológico e pela aplicação na indústria cosmética.

Por seu lado, o lírio-das-areias (Pancratium maritimum L.) é uma planta vivaz e bolbosa da família das Amarilidáceas, que ocorre em areais e dunas fixas das zonas costeiras do Atlântico e do Mediterrâneo, encontrando-se distribuída ao longo de todo o litoral de Portugal Continental. Esta espécie é particularmente apreciada pelas suas funções ambientais e ornamentais, contribuindo para a fixação das dunas costeiras, possuindo elevada resistência à seca extrema e destacando-se pela beleza das suas flores. Também pode ser utilizada na alimentação humana, como condimento, além de ter aplicações medicinais e cosméticas.

Neste trabalho apresentam-se os resultados obtidos com estas três espécies cultivadas em estufa, incidindo na avaliação da sua biomassa e composição mineral. Procedeu-se a esta avaliação com o objetivo de obter informação sobre a quantidade de nutrientes que estas plantas extraem do solo, de modo a estimar a quantidade de nutrientes necessária para atingir determinada produção. Im-

Figura 1 - Couve-marinha (a), funcho-marítimo (b) e lírio-das-areias (c).

porta salientar que no caso das zonas vulneráveis à poluição por nitratos existem limites específicos à fertilização azotada das culturas, definidos pela Portaria n.º 259/2012. No entanto, esta legislação não contempla ainda estas espécies, contribuindo o presente estudo para futuramente estabelecer tais limites.

Procedimento

Numa estufa localizada na Zona Vulnerável de Esposende-Vila do Conde, no concelho da Póvoa de Varzim, foram amostradas quinze plantas adultas inteiras (cinco por espécie) de couve-marinha, funcho-marítimo e lírio-das-areias. Foi também colhida uma amostra de terra, na camada de 0 a 20 cm, para caracterizar o estado de fertilidade do solo da estufa. As análises das amostras de terra e de plantas foram realizadas segundo os métodos em uso no Laboratório Químico Agrícola Rebelo da Silva (LQARS), do INIAV.

Em laboratório, procedeu-se à separação das plantas em parte aérea (caules e folhas) e parte subterrânea (raízes e, no caso do lírio-das-areias, também os bolbos), tendo cada uma das partes sido pesada individualmente para determinação do peso fresco. Em seguida, as amostras de material vegetal foram lavadas e secas numa estufa com ventilação a 65±5 °C, até estabilização do peso, sendo então novamente pesadas. A produção de matéria seca da parte aérea e da parte subterrânea foi calculada a partir da biomassa total das amostras secas. Estas amostras foram moídas e, posteriormente, analisadas quanto ao teor dos seguintes nutrientes: azoto

(N), fósforo (P), potássio (K), cálcio (Ca), magnésio (Mg), sódio (Na), ferro (Fe), manganês (Mn), zinco (Zn), cobre (Cu) e boro (B). O azoto foi determinado por análise elementar num analisador ThermoUnicam FlashSmart® através de combustão seguida de cromatografia gasosa e os restantes nutrientes por espectrometria, num espectrómetro de emissão ótica com plasma acoplado indutivamente (ICP-OES). Com base nos dados obtidos foi possível estimar os valores da extração de nutrientes, considerando que esta corresponde à quantidade de nutrientes que as plantas retiram do solo e/ou do ar para produzir determinada quantidade de biomassa.

Caracterização do solo

O solo da estufa apresenta textura franco-arenosa e pH 7,1; é rico em matéria orgânica, pobre em fósforo e potássio extraíveis e os teores de azoto nítrico, cálcio, magnésio e sódio extraíveis são muito altos; a condutividade elétrica é alta (Quadro 1).

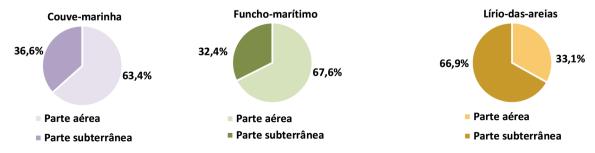
Resultados obtidos

No Quadro 2 podem observar-se, por planta, os valores do peso verde e do peso seco a 65 °C, bem como a percentagem de matéria seca da parte aérea e da parte subterrânea das três espécies em estudo. As plantas de couve-marinha apresentaram uma biomassa superior às restantes espécies, resultando no peso total por planta mais elevado (3791,4 g), enquanto o lírio-das-areias registou o valor mais baixo (231,1 g). Já o funcho-marítimo destacou-se por evidenciar a percentagem mais alta de matéria seca a 100-105 °C (24,9%), obtida na sua parte subterrânea.

Quadro 1 – Características físicas e químicas do solo da estufa (0–20 cm)								
Parâmetros								

Parametros													
Areia ¹	Limo ¹	Argila ¹	Textura	Matéria Orgânica ²	pH (H ₂ O) ³	Azoto nítrico ⁴ (N-NO ₃)	nítrico ⁴ extraível ⁴ extraível ⁴ extraível ⁴ extraível ⁴ extraível ⁴		Condutividade elétrica ⁵				
	(%)			(%)			(mg/kg)						
79,6	10,9	9,4	Franco- -arenosa	4,40	7,1	82	20	46	754	194	160	4,48	

Métodos analíticos: 1 – Densímetro de Bouyoucos; 2 – Digestão com dicromato de sódio e determinação por espetrofotometria de absorção molecular UV/Vis; 3 – Suspensão solo:água de 1:2,5 (v/v) e leitura potenciométrica; 4 – Extração com água, na proporção solo:água 1:5 (p/v); o azoto nítrico foi determinado com o elétrodo seletivo de nitratos e os restantes elementos por espetrometria de emissão de plasma com detetor ótico (ICP-OES); 5 – Suspensão solo:água de 1:5 (p/v) e determinação por condutimetria.


Quadro 2 – Valores médios do peso verde (g), peso seco (g) e matéria seca (%) da parte aérea e parte subterrânea da couve-marinha, funcho-marítimo e lírio-das-areias									
Espécie	Material	Peso verde (g)	Peso seco a 65 °C (g)	Matéria seca a 100−105 °C (%)					
	Parte aérea	2401,9	249,2	9,8					
Couve-marinha	Parte subterrânea	1389,5	301,8	18,8					
Parada and Mina	Parte aérea	978,0	120,3	11,6					
Funcho-marítimo	Parte subterrânea	469,2	127,1	24,9					
Lírio-das-areias	Parte aérea	76,5	10,6	12,9					
	Parte subterrânea	154,6	38,2	17,1					

Salienta-se, no entanto, que a distribuição da biomassa na planta varia conforme a espécie: na couve-marinha a maior parte concentra-se na parte aérea (63,4%), enquanto no lírio-das-areias predomina na parte subterrânea (66,9%), devido ao facto de que, nesta espécie, a parte subterrânea inclui, além das raízes, os bolbos. No funcho-marítimo e na couve-marinha a repartição da biomassa entre a parte aérea e a parte subterrânea é semelhante, com cerca de dois terços e um terço, respetivamente; no lírio-das-areias observa-se o inverso, com aproximadamente um terço de biomassa na parte aérea e dois terços na parte subterrânea (Figura 2). A partir das massas da parte aérea e da parte subterrânea e das suas concentrações de nutrientes, estimou-se a quantidade de nutrientes presente numa tonelada de matéria verde. Estes resultados podem ser observados nos gráficos da Figura 3. O azoto foi o nutriente presente em maior quantidade na parte subterrânea das três espécies, sendo o teor mais elevado obtido na couve-marinha

(5,31 kg/t MV). Os macronutrientes que apresentaram os teores mais baixos foram o magnésio (0,23 kg/t MV), na parte aérea do lírio-das-areias, e o fósforo (0,24 kg/t MV), na parte aérea da couve-marinha. O potássio é o segundo nutriente mais abundante no lírio-das-areias.

Os teores de cálcio na parte aérea da couve-marinha (3,72 kg/t MV) e do funcho-marítimo (2,58 kg/t MV) foram superiores aos respetivos teores de azoto (3,13 kg/t MV e 2,51 kg/t MV), o que não é frequente observar-se na parte aérea das plantas onde o nutriente mais abundante é normalmente o azoto. Este nutriente faz parte da constituição da molécula da clorofila (pigmento fotossintético em abundância nas folhas), mas também dos aminoácidos, proteínas, ácidos nucleicos e enzimas.

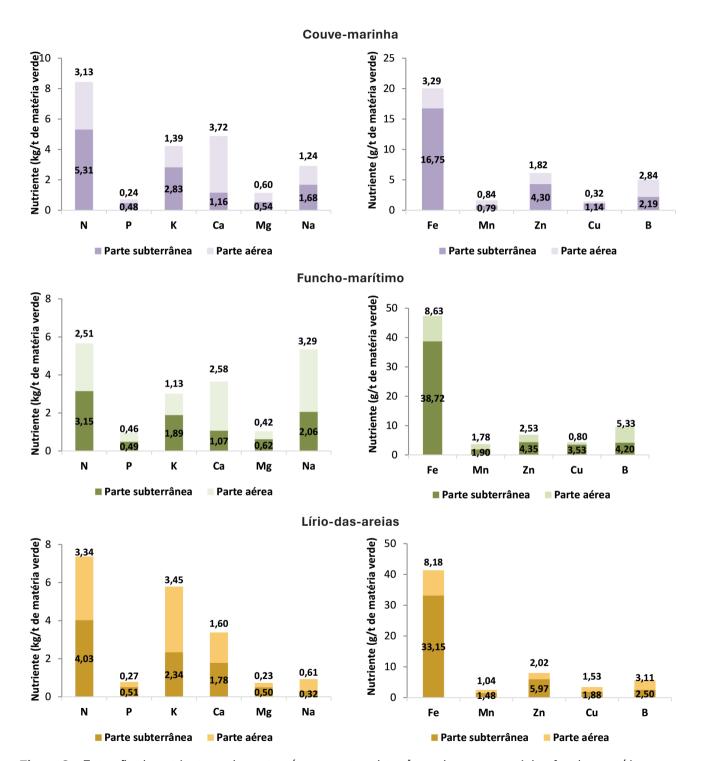

O funcho-marítimo foi a espécie que apresentou o teor de sódio mais alto, quer na parte subterrânea (2,06 kg/t MV) quer na parte aérea (3,29 kg/t MV), sendo mesmo nesta última o nutriente existente

Figura 2 – Distribuição da biomassa entre parte aérea e parte subterrânea da couve-marinha, funcho-marítimo e lírio-das-areias.

em maior quantidade. Elevada presença de sódio é uma das características das plantas que crescem nas regiões costeiras e salinas como as espécies analisadas. O micronutriente mais abundante foi o ferro, seguindo-se o zinco e o boro.

Quando se considera a totalidade da planta, com o peso verde de um quilograma, observa-se que

Figura 3 – Extração de nutrientes pela parte aérea e parte subterrânea da couve-marinha, funcho-marítimo e lírio-das-areias, por tonelada de matéria verde.

Quadro 3 – Extração de nutrientes por planta, com 1 kg de peso verde, da couve-marinha, funcho-marítimo e lírio-das-areias

	Nutriente										
Espécie	N	P	К	Ca	Mg	Na	Fe	Mn	Zn	Cu	В
			(g/	kg)	(mg/kg)						
Couve-marinha	3,93	0,33	1,92	2,78	0,58	1,40	8,22	0,82	2,72	0,62	2,60
Funcho-marítimo	2,72	0,47	1,38	2,09	0,48	2,89	18,38	1,82	3,12	1,69	4,96
Lírio-das-areias	3,80	0,43	2,71	1,72	0,41	0,42	24,86	1,33	4,66	1,76	2,70

a extração de nutrientes, em ordem decrescente, ocorreu da seguinte forma: N > Ca > K > Na > Mg > P > Fe > Zn > B > Mn > Cu na couve-marinha; <math>Na > N > Ca > K > Mg > P > Fe > B > Zn > Mn > Cu no funcho-marítimo; e <math>N > K > Ca > P > Na > Mg > Fe > Zn > B > Cu > Mn no lírio-das-areias (Quadro 3).

Verifica-se, portanto, que a couve-marinha extrai mais azoto, cálcio e magnésio, o funcho-marítimo mais sódio, azoto e cálcio e o lírio-das-areias mais azoto, potássio e cálcio, o que evidencia diferenças nas exigências nutricionais das culturas e reforça a necessidade de ajustar as fertilizações à espécie cultivada.

A partir da composição da matéria seca da parte aérea da couve-marinha, do funcho-marítimo e do lírio-das-areias, assim como das informações disponíveis na bibliografia sobre essas espécies, foi elaborado o Quadro 4.

Na couve-marinha, a concentração mais elevada foi a de cálcio (38,3 g/kg MS), ultrapassando a reportada por Fusheng & Peron (1998). Foram igualmente registadas concentrações superiores de magnésio, sódio e boro em relação às observadas por estes autores, facto que poderá estar associado à proximidade da estufa em relação ao mar.

Quadro 4 − Concentração de N, P, K, Ca, Mg, Na (expressa em g/kg MSª), Fe, Mn, Zn, Cu e B (expressa em mg/kg MS) em couve-marinha, funcho-marítimo e lírio-das-areias												
Referência	Material	N	Р	К	Са	Mg	Na	Fe	Mn	Zn	Cu	В
Referencia	analisado			g/kį	g MS				n	ng/kg N	IS	
Couve-marinha												
Presente estudo	Parte aérea	32,3	2,5	14,6	38,3	6,2	12,4	34,0	8,2	18,3	3,2	28,8
Fusheng & Peron (1998)	Planta inteira (5 meses)	-	4,2	33,5	23,3	1,9	0,5	116,4	47,3	25,8	7,6	14,2
	Funcho-marítimo											
Presente estudo	Parte aérea	21,7	4,0	9,7	22,0	3,6	28,5	73,1	15,0	21,7	6,9	45,6
Martins-Noguerol et al. (2022)												
Local: El Toyo	Folhas	9,92 ^{b)}	2	18	26	5	40	150,6	80,3	41,3	7,3	-
Local: Los Muertos	Folhas	-	2	22	22	4	69	58,4	43,3	31,2	6,6	_
Local: Calblanque	Folhas	-	1	20	29	6	41	77,8	60,1	25,5	4,5	_
Local: Roche campo	Folhas	6,08 b)	1	24	37	5	50	191,7	37,2	26,4	4,3	_
Lírio-das-areias												
Presente estudo	Parte aérea	25,9	2,1	26,9	12,5	1,8	4,7	63,8	8,1	15,7	12,4	24,1
Carfagna et al. (2021)	Folhas	-	-	17,6	5,2	4,4	1,1	5026,0	137,4	54,9	28,6	-

a) MS – matéria seca a 100-105 °C; b) Calculado a partir do teor de proteína (Teor de azoto = teor de proteína/6,25)

Já o funcho-marítimo apresentou na parte aérea um teor de sódio muito elevado (28,5 g/kg MS), porém inferior aos valores obtidos em folhas por Martins-Noguerol et al. (2022). A seguir ao sódio, o cálcio e o azoto são os nutrientes predominantes nas plantas analisadas, sendo que o azoto apresenta valores superiores aos reportados pelos autores atrás citados.

No lírio-das-areias, o potássio é o nutriente encontrado em maior concentração (26,9 g/kg MS), sendo também o mais abundante nos resultados apresentados por Carfagna et al. (2021).

A concentração de sódio do lírio-das-areias é mais baixa do que a registada na couve-marinha e no funcho-marítimo, mas aproximadamente quatro vezes superior à indicada por Carfagna et al. (2021). O ferro é o micronutriente que apresenta a maior concentração nas três espécies, tanto no presente estudo como nos trabalhos mencionados. O cobre tem a concentração mais baixa, exceto no lírio-das-areias, em que o manganês se encontra em menor quantidade.

Nota final

A exportação de nutrientes do sistema cultural está diretamente relacionada com a quantidade de biomassa retirada do sistema e com a composição da mesma. Com base nos resultados deste estudo e considerando uma produção da parte aérea de 70 t/ha para a couve-marinha e para o funcho-marítimo, e de 30 t/ha para o lírio-das-areias, foram estimados os valores de exportação de macronutrientes apresentados no Quadro 5. ©

Quadro 5 – Extração de nutrientes (kg/ha) pela parte área da couve-marinha (70 t/ha), do funcho-marítimo (70 t/ha) e do lírio-das-areias (30 t/ha)

	Produção	Nutriente							
Espécie	da parte aérea	N	Р	K	Ca	Mg			
	(t/ha)	(kg/ha)							
Couve-marinha	70	219	17	97	261	42			
Funcho-marítimo	70	176	32	79	181	29			
Lírio-das-areias	30	100	8,1	104	48	6,8			

Agradecimentos

Agradece-se ao proprietário da estufa onde foram colhidas as plantas, o Sr. Manuel Torres da Costa, pela disponibilidade e colaboração, e ao Técnico Superior André Peixoto pelo apoio prestado durante o trabalho.

Bibliografia

Carfagna, S.; Salbitani, G.; Innangi, M.; Menale, B.; De Castro, O.; Di Martino, C.; Crawford Jr, T.W., (2021). Simultaneous biochemical and physiological responses of the roots and leaves of Pancratium maritimum (Amaryllidaceae) to mild salt stress. Plants, 10:345. https://doi.org/10.3390/plants10020345.

Christensen, J.; Lauridsen, U.B.; Andreasen, C. & Lütken, H. (2015). Influence of temperature, low nutrient supply, and soil composition on germination and the growth of sea kale (Crambe maritima L.). HortScience, **50**(3):363–368.

Fusheng, L. & Peron, J.Y. (1998). Study of the dynamics of nutritional elements in seakale (Crambe maritima, L.) during grow. Acta Hort., **467**, Eds. Rubatzky, V.E., Chen Hang, Péron, J.Y., Proc. 3rd IS on Diversification of Vegetable Crops, ISHS, 215–225.

Kraouia, M; Nartea, A.; Maoloni, A.; Osimani, A.; Garofalo, C.; Fanesi, B.; Ismaiel, L.; Aquilanti, L.; Pacetti, D. (2023). Sea fennel (Crithmum maritimum L.) as an emerging crop for the manufacturing of innovative foods and nutraceuticals. Molecules, 28:4741. https://doi.org/10.3390/molecules28124741.

Martins-Noguerol, R.; Matías, L.; Pérez-Ramos, I.M.; Moreira, X.; Muñoz-Vallés, S.; Mancilla-Leytón, J.M.; Francisco, M.; García-González, A.; DeAndrés-Gil, C.; Martínez-Force, E.; Millán-Linares, M.C.; Pedroche, J.; Figueroa, M.E.; Moreno-Pérez, A.J.; Cambrollé, J. (2022). Differences in nutrient composition of sea fennel (Crithmum maritimum) grown in different habitats and optimally controlled growing conditions. Journal of Food Composition and Analysis, 106:104266. https://doi.org/10.1016/j.jfca.2021.104266.

Renna, M. (2018). Reviewing the prospects of sea fennel (Crithmum maritimum L.) as emerging vegetable crop. Plants, 7:92; https://doi:10.3390/plants7040092.